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Phase separation of a binary fluid containing surfactants in a Hele-Shaw cell

Jiunn-Ren Roan and E. I. Shakhnovich
Chemistry Department, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

~Received 13 July 1998!

The hydrodynamic effect on the phase separation of a two-dimensional binary fluid containing surfactants is
studied. When the quench is deep, so that thermal fluctuations are ineffective, it is found that surfactant clusters
tend to be trapped in domains of binary fluid when the hydrodynamic effect is included. The trapping of
surfactant clusters, however, does not occur when the hydrodynamic effect is absent. It is also found that,
contrary to the usual expectation, the domain grows with time algebraically at higher average surfactant
concentrations and logarithmically at lower average surfactant concentrations. A simple scaling argument is
given to explain this abnormal result.@S1063-651X~99!08402-0#

PACS number~s!: 05.70.Fh, 64.10.1h, 62.20.Mk
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I. INTRODUCTION

While the dynamics of phase separation in a bin
system has been intensively studied@1–5#, very little
is known about the dynamics of phase separation in a ter
system made up of a binary fluid and surfactants s
as microemulsions. A surfactant is typically composed
two parts, each being attracted to one component of
binary fluid. Examples are amphiphilic molecules~e.g., soap!
in an oil-water mixture andA-B diblock copolymers in
a blend of A and B homopolymers. The presence
surfactants in a phase-separating binary fluid significa
alters the dynamic as well as equilibrium properties
the fluid. Because of the interconnection of the two parts
the surfactant, the binary fluid cannot freely separ
into two macroscopic domains, instead, it segregates
mesoscopic domains, with surfactants being located
the interfaces between domains, when thermal equilibr
is reached. The equilibrium domain structure depends
the composition of the ternary mixture. The morpholo
of these systems has been studied in great detail in
past decade@6#, yet the study of the dynamics of phas
separation in these systems has just started to at
more attention@7–12#. It is still unclear to what extent the
hypothesis and theories developed for binary system ca
applied to binary fluid–surfactant systems.

Several models have been proposed for amphiphilic s
tems. Gompper and Schick classified these models in te
of types of approach: microscopic, Ginzburg-Landau, a
membrane approaches@6#. Since most theories on the dy
namics of phase separation are constructed using
Ginzburg-Landau approach, it is convenient to use c
tinuum models to study the dynamics of phase separatio
amphiphilic systems. Models using this approach can be
ther classified in terms of the number of order parame
used. Usually the first order parameter describes the con
tration difference between the two components in a bin
fluid, the first additional order parameter describes the s
factant concentration, and so on. To make the descrip
computationally economic while keeping minimum inform
tion regarding the surfactants so that one can see how
surfactants affect phase separation, two-order-param
PRE 591063-651X/99/59~2!/2109~17!/$15.00
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models perhaps are the most adequate models. Recently
mura and Kodama@10# proposed a two-order-paramet
model which fixes the thermodynamic instability in th
model proposed earlier by Laradjiet al. @13#. They studied
the dynamics of phase separation of their model at crit
quench in the absence of a hydrodynamic effect@10# as well
as in the presence of a steady shear flow@14#. However, it is
known from the dynamic theory of phase separation in
nary fluid that the hydrodynamic effect plays a crucial ro
@15#. For example, the domain growth exponenta, defined
by the scaling of typical domain sizeR(t);ta, changes from
1
3 to 1 in three dimensions when the hydrodynamic effec
included. It is our purpose in this work to understand ho
the hydrodynamic effect changes the phase separation
namics in Komura and Kodama’s model.

The hydrodynamic effect has been customarily ignored
numerical studies of the phase separation dynamics of
binary fluid–surfactant system using the Ginzburg-Land
approach. To our knowledge, Pa¨tzold and Dawson’s work
@16# is the only work that takes into account hydrodynam
effect in simulations. They applied the nonlinear hydrod
namics developed earlier@17# to the model proposed by
Laradji et al. @13#. It was found that the domain grows alge
braically when the thermal fluctuation is also included, a
that the domain grows more slowly than logarithmica
when the thermal fluctuation is not included. Instead of a
plying the approach developed in Ref.@17#, here we shall
adopt an alternative approach to incorporate hydrodynam
Since our simulations will be performed in two dimension
and since we believe that compressibility can be igno
without losing the essential feature of the hydrodynamic
fect, we shall apply Navier-Stokes hydrodynamics and c
sider Hele-Shaw~HS! cell geometry to ensure that the sy
tem is quasi-two-dimensional and to enable us to ignore
inertia force @18,19#. Phase separation dynamics of bina
fluid in a HS cell has been studied numerically in@20# using
a cell dynamics system@21#. Although simple dimensiona
analysis givesa5 1

3 for the HS cell, the same as the grow
exponent in systems without hydrodynamics, domains in
HS cell do grow faster. Therefore, faster domain growth
expected to be seen in ternary systems as well.
2109 ©1999 The American Physical Society
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FIG. 1. Time evolution ofc ~left! andr ~middle!, and their profile~solid line forc and dotted line forr) along the@1,1# direction~right!
for ^r&50.1 in an ordinary cell.
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In Sec. II we define the model and dynamics, and outl
the numerical scheme. In Sec. III we present and discuss
results of our simulations. Since surfactants reduce the in
face tension which drives the motion of interfaces, it is e
pected that the system will appear less binary-fluid-like
the average surfactant concentration increases. However
results seem to be in conflict with this expectation. A sim
e
he
r-
-
s
our
e

scaling argument will be given in this section to explain t
observed time dependence of domain growth, which beha
more like a binary fluid at higher average surfactant conc
trations. We shall also present a preliminary simulation
which both hydrodynamics and thermal fluctuations, wh
are ignored in the rest of simulations, are included. In S
IV, conclusions will be made.
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FIG. 1. ~Continued!.
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II. MODEL

A. Free energy

The free energy proposed by Komura and Kodama is@10#

F5E dr @w~“2c!21d~“c!22ac2

1uc41er2~r2rs!
22sr~“c!2# ~2.1!

wherec(r ,t) is the concentration difference between the t
components of binary fluid andr(r ,t) is the surfactant con
centration. Parametersw, d, a, u, e, rs , ands are all posi-
tive. The free energy is bounded below byw and u terms.
While the s term drives the surfactant to the interface b
tween the two components, thee term makes the surfactan
density tend to be either zero~far away from interfaces! or rs
~near interfaces!. The termsd anda are the usual Ginzburg
Landau free energy terms which disfavor creation of int
faces and disordered phases, respectively. However, th
fect of d is counteracted bys: Depending on the relative
magnitude ofd and sr, the creation of interfaces can b
either energetically favorable or suppressed. Since in mi
emulsions the interface tension vanishes when the inter
is saturated with surfactants@22#, d5srs will be chosen as in
Ref. @10#, so that creation of interfaces does not cost a
energy when the local surfactant concentration is satura
i.e., r(r )5rs . The chemical potential needed to ensure c
servation of order parametersc and r have been omitted
because the kinetic equations considered below always p
these constant terms under the action of spatial differen
tion.

Equation~2.1! has been used to model the dynamics
phase separation of binary fluid–surfactant mixture at crit
-

-
ef-

o-
ce

y
d,
-

ce
a-

f
l

quench in the absence of hydrodynamic effect@10# and in the
presence of a steady shear flow@14#. The results of Ref.@10#,
in particular the behavior of domain growth, differ from th
results obtained in the three-order-parameter model propo
by Kawakatsu and co-workers@7,23,24#, in which the direc-
tor of surfactant is used as the third order parameter. Kom
and Kodama’s model and Kawakatsu and co-workers’ mo
may not belong to the same universal class.

B. Dynamics

Phase separation dynamics of the ternary system
scribed by Eq.~2.1! is modeled by the kinetic equation
@25,26#

]c~r ,t !

]t
1u~r ,t !–“c~r ,t !5Mc“

2
dF

dc~r ,t !
1hc~r ,t !

~2.2a!

]r~r ,t !

]t
1u~r ,t !–“r~r ,t !5M r“

2
dF

dr~r ,t !
1hr~r ,t !

~2.2b!

r̄F]u~r ,t !

]t
1u~r ,t !–“u~r ,t !G

5h̄“2u~r ,t !2“p~r ,t !1
dF

dc~r ,t !
“c~r ,t !

1
dF

dr~r ,t !
“r~r ,t !1z~r ,t !, ~2.2c!

whereMc andM r are transport coefficients,r̄ andh̄ are the
density and viscosity of the system@27#, andhc , hr , andz
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FIG. 2. Same as Fig. 1, for̂r&50.1 in a HS cell, starting from the same initial distributions ofc andr as in Fig. 1.
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are the thermal fluctuations satisfying fluctuation-dissipat
relations for the corresponding fields. Equations~2.2! couple
the usual Cahn-Hilliard-Cook equations@28,29# for con-
served order parametersc andr to a Navier-Stokes equatio
whose stress tensor is properly modified by the coupling
can be easily seen through the corresponding Fokker-Pla
equation that an alternative form of the coupling terms in E
~2.2c! is
n

It
ck
.

2F“ dF

dc~r ,t !Gc~r ,t !2F“ dF

dr~r ,t !Gr~r ,t !. ~2.3!

The statistical dynamics generated by this alternative fo
should be the same as what Eqs.~2.2c! describes.

In Eqs.~2.2! we have assumed that the system is inco
pressible. The phase separation dynamics in a compres
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FIG. 2. ~Continued!.
he

e
f
o

ha

tio
ng
al
ce
ba
g

i

-
w
w
c

id
ki

ry

-

ree
ary
ternary system was discussed in Ref.@16#. However, we be-
lieve that the compressibility does not significantly affect t
behavior of phase separation as long as the system is
away from the critical regime.

To solve Eqs.~2.2! the following assumptions will be
imposed in order to simplify simulations. We first assum
that in the late stage thermal fluctuations are irrelevant, as
as the scaling of domain growth is concerned. The validity
this assumption has been numerically demonstrated for p
separation in binary systems@30,31#. As we will see in Sec.
III, for the ternary system considered here, this assump
also holds in a very wide range of late stages. In this ra
the existence of well-separated domains with length sc
much larger than the length scale of the fluctuation-indu
raggedness should make the system become less glo
affected by thermal fluctuations. Only in the very late sta
does this assumption break down~see Ref.@16#. See also
Sec. III D!. Second, we shall assume that the fluid motion
slow enough so that the second order termu–“u can be
ignored~Stokes approximation!. This is also reasonable be
cause the collective motion of fluid is limited by the slo
diffusion process in the absence of shear flows. Finally,
also assume that the relaxation of the fluid field is mu
faster than the relaxation of order paramerter fields~Markov
approximation!. This assumption is valid as long as the flu
is far from critical regime. With these assumptions, the
netic equations become

]c~r ,t !

]t
1u~r ,t !–“c~r ,t !5Mc“

2
dF

dc~r ,t !
, ~2.4a!

]r~r ,t !

]t
1u~r ,t !–“r~r ,t !5M r“

2
dF

dr~r ,t !
, ~2.4b!
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05h̄“2u~r ,t !2“p~r ,t !1
dF

dc~r ,t !
“c~r ,t !

1
dF

dr~r ,t !
“r~r ,t !. ~2.4c!

To solve Eq.~2.4c! requires a properly specified bounda
condition. Formally the solution is

u~r ,t !5E dr 8 T~r2r 8!–F dF

dc~r 8,t !
“c~r 8,t !

1
dF

dr~r 8,t !
“r~r 8,t !G , ~2.5!

whereT(r2r 8) is the Oseen tensor,

T~r !5E dk

~2p!d
eik–rTk , ~2.6a!

Tk5
g~k!

h̄
~12 k̂k̂! ~2.6b!

(1 being the unit tensor!. The effect of the boundary condi
tion enters through functiong(k) in Eq. ~2.6b!. The so-called
free boundary condition gives the usualg(k)51/k2. Koga
and Kawasaki@32# and Shinozaki and Oono@33# applied this
form to study the phase separation in a binary fluid in th
dimensions. In two dimensions, however, the free bound
condition leads to the well known Stokes paradox@19,34#,
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FIG. 3. Same as Fig. 1, for̂r&50.4 in an ordinary cell.
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which is manifested by the logarithmic dependence ofT(r ).
To avoid this unrealistic logarithmic dependence, we sh
apply the no-slip boundary condition to incorporate the h
drodynamic effect in two dimensions. Experimentally th
corresponds to the HS cell, in which the fluid is confined
two parallel narrowly separated plates@18,19#. With no-slip
boundary condition,g(k) becomes a constant and the Ose
tensor and fluid fields are given by
ll
-

n

Tk5
d̄2

12h̄
~12 k̂k̂!,

~2.7!

u52
d̄2

12h̄
F“p~r ,t !2

dF

dc~r ,t !
“c~r ,t !2

dF

dr~r ,t !
“r~r ,t !G ,
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where d̄ is the spacing between the two plates. Equatio
~2.7! are sometimes called Darcy’s law@19#. Since the pa-
rametersd̄ andh̄ do not enter the problem independently, w
follow Shinozaki and Oono@20# and write

u52
1

c2F“p~r ,t !2
dF

dc~r ,t !
“c~r ,t !2

dF

dr~r ,t !
“r~r ,t !G

~2.8!

wherec2.0 is a parameter measuring the significance of
hydrodynamic effect. ProductsMcc2 and M rc2 give the
relative contribution of diffusive effect to the hydrodynam
effect.

C. Numerical implementation: cell dynamic system

A cell dynamic system~CDS! @21# is used to solve the
coupled kinetic equations~2.4a!, ~2.4b!, and ~2.8! numeri-
cally @10#. Following the CDS scheme for the hydrodynam
system proposed in Refs.@20,33#, the CDS is implemented
on aL3L square latticen5(nx ,ny) in the following order:

I~n,t !52Atanhc~n,t !1c~n,t !1W~D̃ !2c~n,t !

2~D2Sr!D̃c~n,t !1S“̃c~n,t !–“̃r~n,t !,

~2.9a!

J~n,t !5Er~r2rs!~2r2rs!2 1
2 S„“̃c~n,t !…2,

~2.9b!

c* ~n,t !5c~n,t !1McD̃I~n,t !, ~2.9c!

r* ~n,t !5r~n,t !1M rD̃J~n,t !, ~2.9d!
s

e

p~n,t !5F21$@“2#d
21F“̃–@I~n,t !“̃c~n,t !

1J~n,t !“̃r~n,t !#%, ~2.9e!

u~n,t !52
1

c2 @“̃p~n,t !2I~n,t !“̃c~n,t !2J~n,t !“̃r~n,t !#,

~2.9f!

c~n,t1Dt !5c* ~n,t !2“̃–@u~n,t !c* ~n,t !#, ~2.9g!

r~n,t1Dt !5r* ~n,t !2“̃–@u~n,t !r* ~n,t !#, ~2.9h!

whereF denotes Fourier transform andDt the time step size
used in obtaining the CDS from the original partial differe
tial equations.~In the following, when timet is used, its unit
will always beDt.) The CDS parametersA, W, D, S, and
E in Eqs. ~2.9a! and ~2.9b! are related to the free energ
parameters in Eq.~2.1! by A5112aDt, W52wDt, D
52dDt, S52sDt, and E52eDt. The CDS discretization
of the differential operators on a two-dimensional square
tice used are

“̃f[
1

2
@f~nx11,ny!2f~nx21,ny!,f~nx ,ny11!

2f~nx ,ny21!#,

D̃f[
1

2(NN
f1

1

4(
NNN

23f,

@¹2#df[(
NN

f24f,
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FIG. 4. Same as Fig. 1, for̂r&50.4 in a HS cell, starting from the same initial distributions ofc andr as in Fig. 3.
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where NN and NNN are the nearest neighbor and ne
nearest neighbor, respectively. Shinozaki and Oono, in R
@33#, discussed the legitimacy of this hydrodynamic CD
scheme. We note that a similar scheme is also used in
calculations of quantum dynamics and femtochemical re
tions @35#.

In order to compare our result with Komura an
Kodama’s@10#, their parameters are used in the followin
simulations: L5128, A51.3, W50.2, D50.5, S50.5,
t-
f.

he
c-

E50.25,rs51, andMc5M r50.05. The initial distributions
of c and r will also follow their choice: random uniform
distributions in @20.01,0.01# ~critical quench! for c and
@^r&20.01,̂ r&10.01#, where^r& is the average concentra
tion of surfactants, forr. It is clear that the CDS schem
@Eqs.~2.9!# will suffer from numerical instability whenc2 is
small while, on the other hand, largec2 will render the hy-
drodynamic effect negligible. To see the hydrodynamic
fect, therefore, we should use the smallest stablec2 for the
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FIG. 4. ~Continued!.
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chosen parameters. Since we find thatc2510 gives a stable
and significant hydrodynamic effect andc255 leads to nu-
merical overflow,c2510 is used in the following simula
tions.

III. RESULTS AND DISCUSSION

A. Time evolution of order parameters

Simulations are performed for^r&50.1, 0.2, 0.3, 0.4, and
0.5 over 500 000 time steps. Figures 1–4 show the typ
time evolution ofc and r in an ordinary cell~i.e., a cell
without a hydrodynamic effect! and a Hele-Shaw cell. The
structures shown in the left and middle columns of the
figures are generated by darkening lattice sites wherec.0
and r.^r&, respectively~a ‘‘hardened’’ system@33#!. Fig-
ures 5–7 show the final domain structures for^r&50.2, 0.3,
and 0.5. There exists a percolation thershold of average
factant density, above which the interfaces are everywh
saturated with surfactants whent→`. These figures show
that for our system this threshold is between^r&50.2 and
^r&50.3 @36#. The most striking feature revealed in the
figures is that above the percolation threshold there o
exist clusters of trapped surfactants in domains of bin
fluid in a Hele-Shaw cell. This can be understood as follo
The motion of surfactants is given by Eq.~2.4b!, namely,

]r~r ,t !

]t
1u~r ,t !–“r~r ,t !

5M r“
2@2er~r2rs!~2r2rs!2s~“c!2#. ~3.1!

In the early stage interfaces are not very sharp and the
main sizes are small, so surfactants are efficiently driven
the density gradient of binary fluid, (“c)2, and migrate over
short distances, of the order of the domain sizes, to
al

e

r-
re

n
y
.

o-
y

e

nearby domain boundary. At the same time, the surfac
concentrationr approaches its equilibrium values 0 orrs ,
depending on whether the surfactant is located at the in
face or in the domain. In the late stage, it is known th
hydrodynamic convection dominates and helps the ph
separation of the binary fluid proceed faster@15,20,37#. As
the interfaces quickly withdraw, some of the surfactants t
were located at the interfaces in early stage may lag beh
and eventually find themselves being trapped deeply in
mains, where the density gradient ofc is almost zero. Since
these surfactants have already evolved intor5rs in the early
stage, and the slaved fluid field is also almost vanishing
the domain@cf. Eq. ~2.7!#, according to Eq.~3.1! the time
evolution of these surfactants will be effectively frozen. O
the other hand, in an ordinary cell the interface motion
slower, and surfactants have sufficient time to follow inte
faces. Therefore, surfactants are usually not trapped.
lower ^r&, in early stage surfactants are unlikely to for
large clusters, which would require longer times to diffuse
interfaces at later times, so trapped surfactants are less li
to be observed in these systems.

For the trapped surfactants the only way to reach in
faces is through thermal agitation. However, as we sh
present below~Sec. III D!, thermal fluctuations may not b
effective enough until a very late stage, and some surfact
may be effectively trapped for a very long time. The trappi
of surfactants, to our knowledge, has not been observe
previous simulations. It is interesting to pursue whether i
experimentally observable in deeply quenched systems.

B. Time evolution of characteristic length

Although domain structures in the HS cell are very sim
lar to those in the ordinary cell, the domain growth behav
very differently. Following Shinozaki and Oono@33#, the
inverse characteristic length of the binary fluid is defined
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FIG. 5. Final patterns ofc ~left! andr ~middle!, and their profile~solid line forc and dotted line forr) along the@1,1# direction~right!
for ^r&50.2 in ~a! an ordinary cell and~b! a Hele-Shaw cell.~a! and ~b! have the same initial distributions ofc andr.
ure
o

^kc~ t !&[
(
kÞ0

uku21Sc~k,t !

(
kÞ0

uku22Sc~k,t !

, ~3.2!
FIG. 6. Same as Fig. 5, for̂r&50.3 in ~a! an ordinary cell, and~b! a Hele-Shaw cell.
whereSc(k,t)[^ck(t)c2k(t)& is the structure factor ofc.
The inverse characteristic length ofr can be similarly de-
fined. The ensemble average in the definition of struct
factor is obtained in this work by averaging over tw
samples@38#. Figure 8 shows the time evolution of^kc(t)&.
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FIG. 7. Same as Fig. 5, for̂r&50.5 in ~a! an ordinary cell, and~b! a Hele-Shaw cell.
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Because thermal fluctuation is ignored, in early times th
exists a plateau which signifies the Cahn-Hilliard linear
gime @28#. Unlike the system introduced by Kawasaki a
Kawakatsu@23#, in which the linear regime is too short to b
observed when surfactants are present@24#, this plateau per-
sists to the highest average concentration simulated. The
ear regime, which is shorter at higher^r&, ends aroundt
'103.5. This figure clearly shows that the domain grow
faster in the HS cell than in an ordinary cell, as predicted
Refs. @15,20,37#. The difference between the two cells b
comes more discernible after the linear regime ends. In
absence of thermal fluctuations, growth in both cells st
near the end of the simulation because the interface ten
drops to zero when the interfaces are saturated with sur
tants.

In Fig. 9 we plot the ratio of̂ kr& to ^kc& versus time.
This ratio can be used as an indication of how well the s
factants follow the motion of interfaces. If the surfactan
closely follow the motion of interfaces,^kr&/^kc& should be
close to 2. Althougĥ kr& can be strongly biased by som
small-scale trapped surfactants when the number of sam
used in the ensemble average is small~for example, the
curve for ^r&50.4 is biased toward a higher value becau
the system shown in Fig. 4 is one of the samples used in
ensemble average!, it appears that all curves converge to t
neighborhood of 2. The convergence sets in at the same
when the linear regime ends. This figure also implies that
percolation threshold lies between^r&50.2 and 0.3. For̂r&
smaller than the percolation threshold, before surfactants
the interfaces become more evenly distributed by hydro
namic convection in the late stage, surfactants are far
than enough to coat the interfaces and, therefore, they
smaller^kr&. For ^r& greater than the threshold, in the ear
stage, surfactants, in addition to being able to coat the in
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FIG. 8. Time evolution of the inverse characteristic length sc
of c. s.d. represents spinodal decomposition of a binary fluid w
out surfactants.
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faces completely, are also able to scatter themselves in
mains and makêkr& greater.

Kawakatsuet al. argued in Ref.@24# that the character
istic domain size should grow algebraically and the
after the interfaces are saturated with surfacta
logarithmically. In Fig. 10 we fit the curves of Fig.
using an algebraic growth laŵk&;ta @39#. In Fig. 11
the large t portions of these curves are fitted using
logarithmic growth law ^k&;(ln t)b @39#. We find that,
for ^r&50.1 and 0.2, neither ordinary nor HS cells c
be fitted algebraically. The algebraic growth behav
may be too short to be observed for these cells. This se
to be inconsistent with the fact that these systems actu
are more binary-fluid-like, in terms of amount of surfactan
added, than systems with higher^r&. A possible explana-
tion is that the algebraic behavior seen in Fig. 10 is
fact logarithmic, because some curves in Fig. 10 can a
be fitted by logarithmic law in a wider range of time. F
example, the four curves for̂r&50.4 and 0.5 can be

FIG. 9. Ratio of inverse characteristic length scales of the s
factant,^kr(t)&, and of the binary fluid,̂kc(t)&.
o-

,
s,

r
s

lly
s

o

fitted logarithmically from t5103.6 to 105.4 ~although the
correlation coefficients are not as high as those found
Fig. 10.! In other words, it is possible that these curv
have two logarithmic growth regimes. Neverthele
since our purpose here is simply to demonstrate t
the logarithmic behavior suggested prviously for oth
models @13,24# also gives reasonable fits for mod
~2.1!, rather than to conclusively determine the grow
law by simple fitting, we shall not pursue more preci
fitting.

Instead, we discuss here a possible explana
for the inconsistency mentioned above. In Ref.@37#,
Kawasaki and Ohta apply drumhead model@40# to phase
separation kinetics. The interface kinetic equation th
derived is

r-
FIG. 10. Algebraic fit of the curves in Fig. 8. Symbols have t

same meaning as those in Fig. 8, i.e.,1 with dotted line for^r&
50.0, etc. Points not used in the fit are not shown. Curves
^r&50.1 and̂ r&50.2 in both an ordinary cell and a HS cell cann
be fitted algebraically.
sK~a!2h~ t !Dce5~Dce!
2E da8G„r ~a!,r ~a8!…v~a8!

2~Dce!
2E da8da9G„r ~a!,r ~a9!…n~a8!–T„r ~a8!,r ~a9!…–n~a9!sK~a9!, ~3.3!
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FIG. 11. Logarithmic fit of the curves in Fig. 8. The symbo
have the same meaning as those in Fig. 8, i.e.,1 with dotted line
for ^r&50.0, etc. In order to make curves more distinguishab
they are arbitrarily separated into two plots. Points not used in
fit are not shown. Note that the times covered by the fit extend
the late part of the times used in algebraic fit~Fig. 10!.

FIG. 12. Plot of scaled structure factorF(Q)5^k&2S(k) vs the
scaled wave vectorQ5k/^k& for ^r&50.1 in a Hele-Shaw cell for
times within the ‘‘algebraic growth regime’’ defined by Fig. 1
Filled symbols~including the symbol1! represent times that ar
also within the early ‘‘logarithmic growth regime’’ defined by Fig
11!.
,
e
o

FIG. 13. Same as Fig. 12, for^r&50.4 in a Hele-Shaw cell.

FIG. 14. Porod’s plot for̂ r&50.1 in a Hele-Shaw cell for vari-
ous times.

FIG. 15. Porod’s plot for̂ r&50.4 in a Hele-Shaw cell for vari-
ous times.
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FIG. 16. Time evolution ofc ~left! andr ~middle!, and their profile~solid line for c and dotted line forr) along the@1,1# direction
~right! for ^r&50.4 in a thermally fluctuated Hele-Shaw cell, starting from the same initial distributions ofc andr as Fig. 3.
t
wheres is the interface tension,K(a) the mean curvature a
a, a point on the interface;h(t) an auxiliary function to be
determined by conservation law;Dce the difference between
the two equilibriumc values;v(a) the interface speed ata
alonen(a), the unit normal vector to the interface ata point-
ing from domain withc,0 to c.0; andG(r ,r 8) the solu-
tion of
Mc“
2G~r ,r 8!52d~r2r 8!. ~3.4!

Following the argument in Refs.@37# and @24#, in a Hele-
Shaw cell, if a single characteristic length scaleR(t) domi-
nates the phase separation, Eq.~3.3! gives, for a droplet of
radiusR(t),
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FIG. 16. ~Continued!.
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R
, ~3.5!

where h(t) is ignored for simplicity, andv measures the
importance of hydrodynamic effect. Therefore,

d

dt
R~ t !;sS 11

v

R2D . ~3.6!

The interface tension in Eq.~3.6! is a function of local sur-
factant concentrationr. It can be estimated from Eq.~2.1!
that s;Ad2sr in the drumhead limit@40#. ~For simplicity,
we consider onlyd.sr.) Meanwhile, the local surfactan
concentrationr is inversely proportional toR(t) in two di-
mensions,r;^r&/R. These give

d

dt
R~ t !;Aj2

^r&
R S 11

v

R2D , ~3.7!

wherej.0. If surfactants are not present, Eq.~3.7! gives the
usual R(t);t1/3 law @5,20#, when hydrodynamics is domi
nant. On the other hand, if there are surfactants, the solu
of Eq. ~3.7! gives

t;$ linear combination of̂ r&~522m!/2RmAjR2^r&

and^r&3 ln@AjR1AjR2^r&#%, ~3.8!

where 2m51, 3, and 5 when hydrodynamics dominates, a

t;$ linear combination ofR1/2AjR2^r&

and^r& ln@AjR1AjR2^r&#%, ~3.9!

when the hydrodynamics is ineffective.
on

d

Although Eq. ~3.8! still reduces to the1
3 law when ^r&

→0, there is no guarantee that the binary-fluid-like behav
can be seen at intermediate^r&, nor does it, given the com
plex form of Eq.~3.8!, eliminate the possibility that the be
havior of systems with higher̂r& will appear to be more
binary-fluid-like. Note that, while Eq.~3.3! is quite universal,
the estimation of interface tensions is tricky. Kawakatsu
et al. @24# used an exponential form as their estimation a
therefore, lead to logarithmic growth law. As we note
above, logarithmic behavior may not be very distinct fro
algebraic behavior. Hence it is quite possible that the lo
rithmiclike behavior observed in Refs.@13,24# is indeed a
delicate manifestation of the linear combination in Eq.~3.9!.
If the growth follows Eqs.~3.8! or ~3.9!, fitting ln^k&2ln t
plot using a simple relationship such as an algebraic or lo
rithmic expression may not be meaningful. Furthermo
Eqs.~3.9! and~3.8! are derived based on the assumption t
a single length scale dominates the system. As will be sho
in Sec. III C, this may not be the case. If this assumpt
does not hold, the growth of the domain size will be mo
complicated than Eqs.~3.9! and ~3.8!.

Finally, note that the characteristic length scales in or
nary cells at the end of our simulations are consistent w
the expectation that the more surfactants there are,
smaller the equilibrium domain sizes will be. This expec
tion, however, is not observed in HS cells without therm
fluctuations ~Fig. 8!. Neither was it observed in ordinar
cells with thermal fluctuations@10#. Whether this expectation
holds when both hydrodynamics and thermal fluctuations
included in model~2.1! needs further investigation.

C. Time evolution of structure factor and Porod’s plot

The circularly averaged structure factor for the bina
fluid is defined as
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Sc~k![
1

Nk
(

kPD~k!
Sc~k!, ~3.10!

where D(k) is the circular shell in reciprocal spaceD(k)
[$kuk2 1

2 D,uku,k1 1
2 D% (D5width of the shell!, andNk

is the number of points in the shell. The dynamical scal
hypothesis proposed for phase separation in a binary sy
@2,5# asserts that there is a single dominant length scale
that the scaled structure factorF(Q)[^k&2Ŝc(k), where
Ŝc(k) is the normalizedSc(k) and Q[k/^k& is the scaled
wave vector, should be invariant at different times. Figu
12 and 13 plotF(Q) versusQ in the HS cell for^r&50.1
and 0.4@41#. It can be seen clearly that the hypothesis do
not hold. There may be more than one dominant length s
in the system. When the average surfactant concentratio
lower than the percolation threshold,F(Q) settles down to
its asymptotic frozen form in the latter part of the ‘‘algebra
growth regime’’ defined by the fits in Fig. 10. If the avera
surfactant concentration is higher than the threshold,F(Q)
does not settle down to an asymptotic frozen form until
growth is frozen, that is, untilt>105.3. A qualitatively simi-
lar behavior is also observed in ordinary cells. This is co
trary to what Kawakatsuet al. @24# observed in their model
where dynamical scaling behavior was found at all conc
trations.

Figures 14 and 15 show the so-called Porod’s plots
^r&50.1 and 0.4@41#. Tomita showed clearly in Ref.@42#

FIG. 17. Time evolution of̂ kc& for a Hele-Shaw cell with
thermal fluctuations, a Hele-Shaw cell without thermal fluctua-
tions, an ordinary cell with thermal fluctuations, and an ordinary
cell without thermal fluctuations.
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that the formation of smooth and thin interfaces ind dimen-
sions leads to Porod’s law, limk→` kd11S(k)5bdA, where
bd52d21p (d22)/2G(d/2) (b252 andb352p), andA is the
interface area density. Both plots begin to exhibit th
asymptotic behavior att'104.5, indicating the formation of
sharp interfaces~cf. the right column in Figs. 1–4!. The Po-
rod tail in Figs. 14 and 15 also exhibit a second peak, wh
was attributed by Shinozaki and Oono to the local curvat
fluctuations@33#.

D. Joint effect of hydrodynamics and thermal fluctuations

Finally, we present a preliminary investigation of the e
fect of thermal fluctuations. The CDS scheme used for t
investigation is the same as in Eqs.~2.9!, except that Eqs.
~2.9c! and ~2.9d! are replaced by

c* ~n,t !5c~n,t !1McD̃I~n,t !1Cchc~n,t !

and

r* ~n,t !5r~n,t !1M rD̃J~n,t !1Crhr~n,t !,

where the thermal fluctuationshc(n,t) and hr(n,t) are
implemented in the same way as in Refs.@10,43#. Since the
Cc andCr values used in Ref.@10# lead to numerical over-
flow when the maximum (c2510) hydrodynamic effect is
included, in our simulation we useCc5Cr50.01. Figure 16
shows the time evolution of a Hele-Shaw cell with therm
fluctuations for^r&50.4, starting from the same initial dis
tributions of c and r as in Figs. 3 and 4. As previousl
observed in Ref.@16#, although the domain structure does n
show much difference at late times when only hydrodyna
ics is included, there appears a significant difference w
both hydrodynamics and thermal fluctuations are includ
~cf. Figs. 3, 4, and 16!. It can be seen from Fig. 16 that from
t523105 to t553105 the temporarily trapped surfactan
are able to migrate to the interfaces, while at deep que
(T50) the surfactants are already stuck in domains. Unf
tunately, our simulation time is not long enough to s
whether all the temporarily trapped surfactants eventu
migrate to interfaces at the chosen fluctuation strengthCc
andCr .

The evolution of the inverse characteristic length^kc& is
plotted in Fig. 17. It is evident that the thermal fluctuatio
are irrelevant until a very late stage, as mentioned in S
II B. Into this very late stage the thermal fluctuations beco
relevant because, as discussed in Sec. III A, they become
only force that drives the system away from being frozen
can be seen that there exists a crossover in the very late s
at which the phase separation shifts from a hydrodyna
cally driven mechanism to a thermally driven mechanis
Since domains cannot grow infinitely in the presence of s
factants, thermal fluctuations will eventually become inc
pable of further decreasinĝkc&. By then, what thermal fluc-
tuations can do is simply to reshuffle surfactants and
undulate interfaces.~The time covered in the simulation i
too short to see the final stop of domain growth.!
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IV. CONCLUSION

Incorporating hydrodynamics into the phase separa
dynamics of the model proposed by Komura and Koda
@10# leads to some unexpected results, as presented in
III. The trapping of surfactants in domains of binary fluid
deep quench is an interesting feature that deserves fu
investigation. For weak thermal fluctuations this feature m
be able to survive. For strong thermal fluctuations, althou
trapping becomes less likely to occur, it will be interesting
study dynamics under the competition of hydrodynamics
-

n

s.

an

a

n
a
ec.

er
y
h

d

thermal fluctuations. Fluid systems with an upper consol
point, when being quenched to low temperature, may be u
to examine experimentally the possible existence of trap
surfactant clusters.

The unusual growth behavior observed in our simulatio
is explained using an estimation of interface tension tha
different from the estimation made by Kawakatsuet al. @24#.
This explanation implies that the algebraic or logarithm
behavior proposed in previous investigations is possi
oversimplified.
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