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Phase separation of a binary fluid containing surfactants in a Hele-Shaw cell
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The hydrodynamic effect on the phase separation of a two-dimensional binary fluid containing surfactants is
studied. When the quench is deep, so that thermal fluctuations are ineffective, it is found that surfactant clusters
tend to be trapped in domains of binary fluid when the hydrodynamic effect is included. The trapping of
surfactant clusters, however, does not occur when the hydrodynamic effect is absent. It is also found that,
contrary to the usual expectation, the domain grows with time algebraically at higher average surfactant
concentrations and logarithmically at lower average surfactant concentrations. A simple scaling argument is
given to explain this abnormal resul61063-651X99)08402-Q

PACS numbe(s): 05.70.Fh, 64.16:h, 62.20.Mk

[. INTRODUCTION models perhaps are the most adequate models. Recently Ko-
mura and Kodamd10] proposed a two-order-parameter
While the dynamics of phase separation in a binarymodel which fixes the thermodynamic instability in the
system has been intensively studi¢d-5], very little  model proposed earlier by Laradit al. [13]. They studied
is known about the dynamics of phase separation in a ternamhe dynamics of phase separation of their model at critical
system made up of a binary fluid and surfactants suclyuench in the absence of a hydrodynamic effééf as well
as microemulsions. A surfactant is typically composed ofas in the presence of a steady shear fltd]. However, it is
two parts, each being attracted to one component of thenown from the dynamic theory of phase separation in bi-
binary fluid. Examples are amphiphilic moleculesg., soap  nary fluid that the hydrodynamic effect plays a crucial role
in an oil-water mixture andA-B diblock COpOlymerS in [15] For examp|e, the domain growth exponentdeﬁned

a blend of A and B homopolymers. The presence of by the scaling of typical domain siZ(t) ~t¢, changes from

surfactants in a phase-separating binary fluid significantii"s, 1 in three dimensions when the hydrodynamic effect is
alters the dynamic as well as equilibrium properties of;

. : . _included. It is our purpose in this work to understand how
the fluid. Because of the interconnection of the two parts i, hydrodynamic effect changes the phase separation dy-
the surfactant, the binary fluid cannot freely separate . < in Komura and Kodama’s model

into two macroscopic domains, instead, it segregates into The hydrodynamic effect has been customarily ignored in
mesoscopic domains, with surfactants being located at y y y19

the interfaces between domains, when thermal equilibriur#.umerical. studies of the phase sgparation plynamics of the
is reached. The equilibrium domain structure depends offinary fluid—surfactant system using the Glnzbu,rg-Landau
the composition of the ternary mixture. The morphology@PProach. To our knowledge, ald and Dawson’s work
of these systems has been studied in great detail in the6l iS the only work that takes into account hydrodynamic
past decadd6], yet the study of the dynamics of phase €fféct in simulations. They applied the nonlinear hydrody-
separation in these systems has just started to attraBgmics developed earligl?] to the model proposed by
more attentior{7—12. It is still unclear to what extent the Laradjietal.[13]. It was found that the domain grows alge-
hypothesis and theories developed for binary system can geraically when the thermal fluctuation is also included, and
applied to binary fluid—surfactant systems. that the domain grows more slowly than logarithmically
Several models have been proposed for amphiphilic syswhen the thermal fluctuation is not included. Instead of ap-
tems. Gompper and Schick classified these models in ternglying the approach developed in R¢L7], here we shall
of types of approach: microscopic, Ginzburg-Landau, anddopt an alternative approach to incorporate hydrodynamics.
membrane approaché¢6]. Since most theories on the dy- Since our simulations will be performed in two dimensions,
namics of phase separation are constructed using thend since we believe that compressibility can be ignored
Ginzburg-Landau approach, it is convenient to use conwithout losing the essential feature of the hydrodynamic ef-
tinuum models to study the dynamics of phase separation ifect, we shall apply Navier-Stokes hydrodynamics and con-
amphiphilic systems. Models using this approach can be fursider Hele-ShawHS) cell geometry to ensure that the sys-
ther classified in terms of the number of order parametertem is quasi-two-dimensional and to enable us to ignore the
used. Usually the first order parameter describes the conceimertia force[18,19. Phase separation dynamics of binary
tration difference between the two components in a binanfluid in a HS cell has been studied numerically{20] using
fluid, the first additional order parameter describes the sura cell dynamics systerf21]. Although simple dimensional
factant concentration, and so on. To make the descriptioanalysis givesy= 3 for the HS cell, the same as the growth
computationally economic while keeping minimum informa- exponent in systems without hydrodynamics, domains in the
tion regarding the surfactants so that one can see how thdS cell do grow faster. Therefore, faster domain growth is
surfactants affect phase separation, two-order-parametexpected to be seen in ternary systems as well.
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FIG. 1. Time evolution ofy (left) andp (middle), and their profilgsolid line for ¢ and dotted line fop) along the[1,1] direction(right)
for (p)=0.1 in an ordinary cell.

In Sec. Il we define the model and dynamics, and outlinescaling argument will be given in this section to explain the
the numerical scheme. In Sec. Il we present and discuss thebserved time dependence of domain growth, which behaves
results of our simulations. Since surfactants reduce the intemore like a binary fluid at higher average surfactant concen-
face tension which drives the motion of interfaces, it is ex-trations. We shall also present a preliminary simulation in
pected that the system will appear less binary-fluid-like asvhich both hydrodynamics and thermal fluctuations, which
the average surfactant concentration increases. However, oare ignored in the rest of simulations, are included. In Sec.
results seem to be in conflict with this expectation. A simplelV, conclusions will be made.
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FIG. 1. (Continued.

Il. MODEL quench in the absence of hydrodynamic effd€f and in the

presence of a steady shear flpiM]. The results of Ref.10],

in particular the behavior of domain growth, differ from the

The free energy proposed by Komura and Kodamfd@  results obtained in the three-order-parameter model proposed
by Kawakatsu and co-workef%,23,24, in which the direc-

A. Free energy

F= f dr[W(V24)2+d(V )2— ay? tor of surfactant is used as the third order parameter. Komura
and Kodama’s model and Kawakatsu and co-workers’ model
Fugt+ep(p—p)2—sp(Vih)?] 2.1) may not belong to the same universal class.
s .
B. Dynamics

wherey(r,t) is the concentration difference between the two
components of binary fluid ang(r,t) is the surfactant con- Phase separation dynamics of the ternary system de-
centration. Parameters, d, a, u, €, ps, ands are all posi- Scribed by Eq.(2.1) is modeled by the kinetic equations
tive. The free energy is bounded below tyandu terms.  [25,26
While the s term drives the surfactant to the interface be-
tween the two components, tiesterm makes the surfactant Mﬂj(r t)-Vy(r,t)=M V2i+ (r,t)

. ) - ) ) W 7y,
density tend to be either ze(tar away from interfacesor pq ot oY(r,t)
(near interfaces The termsd anda are the usual Ginzburg- (2.29
Landau free energy terms which disfavor creation of inter-

faces and disordered phases, respectively. However, the ef- p(r,t) n . _ 2, OF +
fect of d is counteracted by. Depending on the relative at u(r,n)-Vp(r,hH=M,v op(r,t) 7,(1, )
magnitude ofd and sp, the creation of interfaces can be (2.2b

either energetically favorable or suppressed. Since in micro-
emulsions the interface tension vanishes when the interface au(r,t)
is saturated with surfactani®2], d= sp will be chosen as in T
Ref. [10], so that creation of interfaces does not cost any
energy when the local surfactant concentration is saturated,
i.e., p(r)=ps. The chemical potential needed to ensure con-
servation of order parameters and p have been omitted,
because the kinetic equations considered beIovy alvyays plqce + oF Vo(r,t)+4r,b), (2.20
these constant terms under the action of spatial differentia- op(r,t)
tion.

Equation(2.1) has been used to model the dynamics ofwhereM , andM, are transport coefficientp, and » are the
phase separation of binary fluid—surfactant mixture at criticatlensity and viscosity of the syste@7], and,,, 7,, and{

+u(r,t)-Vu(r,t)

= V2 \% oF \Y
=7n U(r,t)— p(r’t)+m lﬂ(r,t)
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FIG. 2. Same as Fig. 1, fdip)=0.1 in a HS cell, starting from the same initial distributionsyofindp as in Fig. 1.

are the thermal fluctuations satisfying fluctuation-dissipation
relations for the corresponding fields. Equati¢®2<) couple —[
the usual Cahn-Hilliard-Cook equatiori28,29 for con-

served order parametegsandp to a Navier-Stokes equation

whose stress tensor is properly modified by the coupling. IThe statistical dynamics generated by this alternative form
can be easily seen through the corresponding Fokker-Planabhould be the same as what E¢&2¢ describes.

equation that an alternative form of the coupling terms in Eq. In Egs. (2.2 we have assumed that the system is incom-
(2.29 is pressible. The phase separation dynamics in a compressible

g SF
Vs O |Va ol @3
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FIG. 2. (Continued.
ternary system was discussed in Hé6]. However, we be- — SE
lieve that the compressibility does not significantly affect the 0=7V u(r,t)—Vp(r,t)+sz//(r,t)

behavior of phase separation as long as the system is far
away from the critical regime. oF
To solve Egs.(2.2) the following assumptions will be toa veny. (2.49

. ) iahand ; . p(r,t)
imposed in order to simplify simulations. We first assume
that in the late stage thermal fluctuations are irrelevant, as far T ve Ea(2.4 . | ified bound
as the scaling of domain growth is concerned. The validity of 0 solve q(2.49 requires a properly speciied boundary
this assumption has been numerically demonstrated for pha&gnd't'on' Formally the solution is
separation in binary systenp80,31. As we will see in Sec.
I, for the ternary system considered here, this assumption , .
also holds in a very wide range of late stages. In this range u(r,t)=J dr' T(r=r’)-
the existence of well-separated domains with length scales
much larger than the length scale of the fluctuation-induced
raggedness should make the system become less globally -
affected by thermal fluctuations. Only in the very late stage Sp(r',1)
does this assumption break dowsee Ref[16]. See also
Sec. 1l D). Second, we shall assume that the fluid motion iswhereT(r—r") is the Oseen tensor,
slow enough so that the second order tewnVu can be
ignored (Stokes approximation This is also reasonable be-

T(r)= f

V(r',t)

oF
Sy(r’,t)

Vp(r't)], (2.9

cause the collective motion of fluid is limited by the slow ek, (2.6
diffusion process in the absence of shear flows. Finally, we
also assume that the relaxation of the fluid field is much
faster than the relaxation of order paramerter fiéMarkov g(k) R

approximation. This assumption is valid as long as the fluid Ty=—=(1-kk) (2.6b
is far from critical regime. With these assumptions, the ki- K

netic equations become

(2m)¢

(1 being the unit tens@r The effect of the boundary condi-

aY(r,t) SE tion enters through functiog(k) in Eq.(2.6b. The so-called
e u(r ) V() = vazm, (2.4a2  free boundary condition gives the usuglk)=1/k?. Koga
' and Kawasakj32] and Shinozaki and Oori@3] applied this

form to study the phase separation in a binary fluid in three

ap(r,t) (2.4b dimensions. In two dimensions, however, the free boundary

+u(r,t)-Vp(r,t)=M V2

ot

Sp(r,t)’ condition leads to the well known Stokes paradd®,34,
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FIG. 3. Same as Fig. 1, f@ip)=0.4 in an ordinary cell.

which is manifested by the logarithmic dependencd @f). d2 L

To avoid this unrealistic logarithmic dependence, we shall Ty=—=(1-Kk),

apply the no-slip boundary condition to incorporate the hy- 127

drodynamic effect in two dimensions. Experimentally this 2.7
corresponds to the HS cell, in which the fluid is confined in

two parallel narrowly separated platgs3,19. With no-slip e

boundary conditiong(k) becomes a constant and the Oseen;— — t[Vp(r,t) _
tensor and fluid fields are given by 12
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FIG. 3. (Continued.
whered is the spacing between the two plates. Equations p(n,t)=F"H[V?]y YEV [Z(n,t) Vig(n,t)
(2.7 are_some_times called Darcy’s la\9]. Since the pa- 3
rametersd and# do not enter the problem independently, we +J(n,t)Vp(n,1)]}, (2.99

follow Shinozaki and Oon$20] and write

1 . ~ ~
u(n,t)=—=z[Vp(n,t) =Z(n,1) V¢(n,t) = J(n,H) Vp(n, 1) ],
(2.9

1
u=—?Vp(r,t) Vy(r,t)— Vp(r,t)

(2.9

SF
6z/f(r 0 Sp(r,b)

d(nt+At) =y¢*(n,t)—V-[u(n,t)y*(n,t)], (2.99

wherec?>0 is a parameter measuring the significance of the
hydrodynamic effect. ProductM ,c? and M c? give the . - .
relative contribution of diffusive effect to the hydrodynamic p(n,t+At)=p*(n,t) = V-[u(n,h)p*(n,t)], (2.9n
effect.

whereF denotes Fourier transform ad the time step size
used in obtaining the CDS from the original partial differen-
tial equations(In the following, when time is used, its unit
A cell dynamic systen{CDS) [21] is used to solve the will always beAt.) The CDS parametes, W, D, S, and

C. Numerical implementation: cell dynamic system

coupled kinetic equation&.4a, (2.4b, and (2.8) numeri- E in Egs. (2.99 and (2.9b are related to the free energy
cally [10]. Following the CDS scheme for the hydrodynamic parameters in Eq(2.1) by A=1+2aAt, W=2wAt, D
system proposed in Reff20,33, the CDS is implemented =2dAt, S=2sAt, and E=2eAt. The CDS discretization
on aL XL square latticen=(n,,ny) in the following order:  of the differential operators on a two-dimensional square lat-

_ tice used are
Z(n,t)= — Atanhy(n,t) + (n,t) + W(A)?¢(n,t)

- - - - 1

- (D_SP)Alﬂ(n,t)‘*‘SVlﬂ(n,t) 'Vp(n!t)v V¢E §[¢(nx+ 1!ny)_ ¢(nx_ 1!ny)’¢(nx vny+ 1)
2.9
( a _d’(nxvny_l)]y

JnH)=Ep(p—ps)(2p—ps) —3S(Vi(n,1))?, 1 1
(295 Rp=3> 52 ~30
AN AN '
¢* (n,H)=y(n,t)+M,AZ(n,t), (2.99

2 = _
p*(n,H=p(n,t)+M K Jn,t), (2.90) v ]dd’_% $—4e,
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FIG. 4. Same as Fig. 1, fdip)=0.4 in a HS cell, starting from the same initial distributionsyofindp as in Fig. 3.

where NN and NNN are the nearest neighbor and nextE=0.25,ps=1, andM ,=M ,=0.05. The initial distributions
nearest neighbor, respectively. Shinozaki and Oono, in Rebf  and p will also follow their choice: random uniform
[33], discussed the legitimacy of this hydrodynamic CDSdistributions in[—0.01,0.0] (critical quench for ¢ and
scheme. We note that a similar scheme is also used in tHép)—0.01{p)+0.01], where(p) is the average concentra-
calculations of quantum dynamics and femtochemical reaction of surfactants, fop. It is clear that the CDS scheme
tions[35]. [Egs.(2.9] will suffer from numerical instability whew? is

In order to compare our result with Komura and small while, on the other hand, largé will render the hy-
Kodama’s[10], their parameters are used in the following drodynamic effect negligible. To see the hydrodynamic ef-
simulations: L=128, A=1.3, W=0.2, D=0.5, S=0.5, fect, therefore, we should use the smallest staBléor the
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chosen parameters. Since we find that 10 gives a stable nearby domain boundary. At the same time, the surfactant

and significant hydrodynamic effect aed=5 leads to nu- concentratiorp approaches its equilibrium values 0 py,
merical overflow,c?=10 is used in the following simula- depending on whether the surfactant is located at the inter-

tions. face or in the domain. In the late stage, it is known that
hydrodynamic convection dominates and helps the phase
1Il. RESULTS AND DISCUSSION separation of the binary fluid pl’OCGEd fasEéB,ZO,SZ. As
the interfaces quickly withdraw, some of the surfactants that
A. Time evolution of order parameters were located at the interfaces in early stage may lag behind

¢ and eventually find themselves being trapped deeply in do-
Jnains, where the density gradient®fis almost zero. Since
these surfactants have already evolved ptop in the early

Simulations are performed f¢p)=0.1, 0.2, 0.3, 0.4, an
0.5 over 500000 time steps. Figures 1-4 show the typic

time evolution ofy and p in an ordinary celli.e., a cel stage, and the slaved fluid field is also almost vanishing in
without a hydrodynamic effegtand a Hele-Shaw cell. The P ; :
structures shown in the left and middle columns of thesa'e domainict. Eq. (2.9], according to Eq(3.1) the time

p ted by darkening latt i evolution of these surfactants will be effectively frozen. On
igures are generated by darkening lattice sites Wie*® 1,0 giher hand, in an ordinary cell the interface motion is

andp>(p), respectively(a “hardened” systeni33)). Fig-  gower, and surfactants have sufficient time to follow inter-
ures 5-7 show the final domain structures@f=0.2, 0.3,  faces. Therefore, surfactants are usually not trapped. At
and 0.5. There exists a percolation thershold of average suggywer (p), in early stage surfactants are unlikely to form
factant density, above which the interfaces are everywhergyge clusters, which would require longer times to diffuse to
saturated with surfactants when-o. These figures show interfaces at later times, so trapped surfactants are less likely
that for our system this threshold is betweg)=0.2 and tg he observed in these systems.

(p)=0.3[36]. The most striking feature revealed in these For the trapped surfactants the only way to reach inter-
figures is that above the percolation threshold there oftefaces is through thermal agitation. However, as we shall
exist clusters of trapped surfactants in domains of binanpresent below(Sec. Il D), thermal fluctuations may not be
fluid in a Hele-Shaw cell. This can be understood as followseffective enough until a very late stage, and some surfactants

The motion of surfactants is given by EQ.4b), namely, may be effectively trapped for a very long time. The trapping
¢ of surfactants, to our knowledge, has not been observed in
p(r,0) . previous simulations. It is interesting to pursue whether it is
+u(r,t)-Vp(r,t) ) i
ot experimentally observable in deeply quenched systems.

_ 2 2
=M,V 2ep(p—ps)(2p—ps)—=s(V)7]. (3.1 B. Time evolution of characteristic length

In the early stage interfaces are not very sharp and the do- Although domain structures in the HS cell are very simi-
main sizes are small, so surfactants are efficiently driven byar to those in the ordinary cell, the domain growth behaves
the density gradient of binary fluid¥(y)?, and migrate over very differently. Following Shinozaki and Oon@3], the

short distances, of the order of the domain sizes, to théverse characteristic length of the binary fluid is defined by
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FIG. 5. Final patterns of (left) andp (middle), and their profilgsolid line for ¢ and dotted line fop) along the[1,1] direction(right)
for (p)=0.2 in (8 an ordinary cell andb) a Hele-Shaw cell(a) and (b) have the same initial distributions gf andp.

where S, (k,t) =(y(t) ¥_(t)) is the structure factor of.

gfo K| 1S¢(k,t) The inverse characteristic length pfcan be similarly de-

(ky(t))y=———, (3.2  fined. The ensemble average in the definition of structure
E |k|‘28¢(k,t) factor is obtained in this work by averaging over two
K#0 g sampleq 38]. Figure 8 shows the time evolution ¢k, (t)).

32 €4 96 128

(b) t = 500000

FIG. 6. Same as Fig. 5, fgip)=0.3 in (a) an ordinary cell, andb) a Hele-Shaw cell.
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FIG. 7. Same as Fig. 5, f@ip)=0.5 in (a) an ordinary cell, andb) a Hele-Shaw cell.

Because thermal fluctuation is ignored, in early times there
exists a plateau which signifies the Cahn-Hilliard linear re-
gime [28]. Unlike the system introduced by Kawasaki and

Kawakatsy 23], in which the linear regime is too short to be , —— . T '
observed when surfactants are pregedi, this plateau per- 029
sists to the highest average concentration simulated. The lin- IR
ear regime, W_h|ch is shorter at highés), ends arpund 03 Aﬂﬁrfl;g
~10%5 This figure clearly shows that the domain grows .

faster in the HS cell than in an ordinary cell, as predicted in
Refs.[15,20,37. The difference between the two cells be- 041
comes more discernible after the linear regime ends. In the I
absence of thermal fluctuations, growth in both cells stops  -05 |
near the end of the simulation because the interface tensiol
drops to zero when the interfaces are saturated with surfac

tants. a °°

In Fig. 9 we plot the ratio ofk,) to (k,) versus time. 5
This ratio can be used as an indication of how well the sur-g? 071 )
factants follow the motion of interfaces. If the surfactants = —+— sd. *.
closely follow the motion of interfacegk,)/(k,) should be 08 | T @S

—&— <p>=0.1
—— <p>=0.1 (HS)
—h— <p>=02

close to 2. Although(k,) can be strongly biased by some

small-scale trapped surfactants when the number of sample |

used in the ensemble average is sn{&dr example, the —4— <p>=02(HS)

curve for(p)=0.4 is biased toward a higher value because s

the system shown in Fig. 4 is one of the samples used inthe %7 | —o— 024

ensemble averaget appears that all curves converge to the | O <p>=04(HS) ‘
neighborhood of 2. The convergence sets in at the same tim¢ 1.1 { | & =93 4

—O— <p>=0.5(HS)

when the linear regime ends. This figure also implies that the
percolation threshold lies betweén)=0.2 and 0.3. Fo{p) s ‘ L L S
smaller than the percolation threshold, before surfactants or 30 35 4.0 45 5.0 55
the interfaces become more evenly distributed by hydrody-
namic convection in the late stage, surfactants are far less
than enough to coat the interfaces and, therefore, they give FIG. 8. Time evolution of the inverse characteristic length scale
smaller(k,). For(p) greater than the threshold, in the early of . s.d. represents spinodal decomposition of a binary fluid with-
stage, surfactants, in addition to being able to coat the intemut surfactants.

log,,t
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FIG. 9. Ratio of inverse characteristic length scales of the sur-

factant,(k,(t)), and of the binary fluid{k(t)). FIG. 10. Algebraic fit of the curves in Fig. 8. Symbols have the

same meaning as those in Fig. 8, i.¢.,with dotted line for{p)
. =0.0, etc. Points not used in the fit are not shown. Curves for
faces completely, are also able to scatter themselves in dgy—0.1 and(p)=0.2 in both an ordinary cell and a HS cell cannot
mains and makgk ) greater. be fitted algebraically.

Kawakatsuet al. argued in Ref[24] that the character-

istic domain size should grow algebraically and then,giiaq logarithmically fromt=10*¢ to 1** (although the

aﬁer' thg mterface's are satgrated with Surfa.‘CtantScorrelation coefficients are not as high as those found in
logarithmically. In Fig. 10 we fit the curves of Fig. 8

) ) o . Fig. 10) In other words, it is possible that these curves
using an a'gebfa'c growth lawk)~t* [39)]. [n Fig. EU' have two logarithmic growth regimes. Nevertheless,
the larget portions of these curves are fitted using a

LS . since our purpose here is simply to demonstrate that
logarithmic growth law(k)~(Int)? [39]. We find that, L i X
for (p)=0.1 and 0.2, neither ordinary nor HS cells Canthe logarithmic behavior suggested prviously for other

be fitted algebraically. The algebraic growth behaviormOdeIS [13.24 also gives r_easonable f_|ts for - model
may be too short to be observed for these cells. This seenjé-D: rather than to conclusively determine the growth
to be inconsistent with the fact that these systems actuall{gW Py simple fitting, we shall not pursue more precise
are more binary-fluid-like, in terms of amount of surfactants'tting- . _ .
added, than systems with highgs). A possible explana- Instead, we discuss here a possible explanation
tion is that the algebraic behavior seen in Fig. 10 is infor the inconsistency mentioned above. In R¢87],
fact logarithmic, because some curves in Fig. 10 can als§awasaki and Ohta apply drumhead mo@&0] to phase

be fitted by logarithmic law in a wider range of time. For separation kinetics. The interface kinetic equation they
example, the four curves fo{p)=0.4 and 0.5 can be derived is

oK(a)—h<t>A¢e=<Awe>2f da’G(r(a),r(a)o(a’)

—(Awe)zf da’'da’G(r(a),r(a”))n(a’)-T(r(a’),r(a"”))-n(a”)oK(a"), (3.3
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FIG. 16. Time evolution ofy (left) andp (middle), and their profile(solid line for ¢ and dotted line fop) along the[1,1] direction
(right) for {p)=0.4 in a thermally fluctuated Hele-Shaw cell, starting from the same initial distributiogisanid p as Fig. 3.

whereo is the interface tensiorK (a) the mean curvature at M¢VZG(r,r')= —8(r—r'). (3.9
a, a point on the interfaceh(t) an auxiliary function to be

determined by conservation law;/, the difference between

the two equilibrium¢s values;v(a) the interface speed at  Following the argument in Ref$37] and[24], in a Hele-
alonen(a), the unit normal vector to the interfaceapoint-  Shaw cell, if a single characteristic length scR@) domi-
ing from domain with<0 to ¢#>0; andG(r,r’) the solu- nates the phase separation, E&.3) gives, for a droplet of
tion of radiusR(t),
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c 1dR 1o Although Eq. (3.9 still reduces to the; law when(p)
R R4t “RR’ (3.5  —0, there is no guarantee that the binary-fluid-like behavior

can be seen at intermedigte), nor does it, given the com-

where h(t) is ignored for simplicity, andw measures the plex form of Eq.(3.8), eliminate the possibility that the be-

importance of hydrodynamic effect. Therefore, havior of systems with highefp) will appear to be more
binary-fluid-like. Note that, while E(3.3) is quite universal,

the estimation of interface tensianm is tricky. Kawakatsu
(3.6)  etal.[24] used an exponential form as their estimation and,

therefore, lead to logarithmic growth law. As we noted
The interface tension in E@3.6) is a function of local sur- above, logarithmic behavior may not be very distinct from
factant concentratiop. It can be estimated from Eq2.1)  @lgebraic behavior. Hence it is quite possible that the loga-
that o~ \/d—sp in the drumhead limif40]. (For simplicity, rithmiclike behavior observed in Reff13,24 is indeed a
we consider onlyd>sp.) Meanwhile, the local surfactant delicate manifestation of the linear combination in E3}9).

concentratiory is inversely proportional t&R(t) in two di-  f the growth follows Eqs.(3.8) or (3.9), fitting In(k)—Int
mensionsp~{p)/R. These give plot using a simple relationship such as an algebraic or loga-

rithmic expression may not be meaningful. Furthermore,
d (p) ® Eqgs.(3.9) and(3.8) are derived based on the assumption that
RO~ \é— & —) :

dR 1 1)
a (t)’“O’ +§2.

1+ R? (3.7 asingle length scale dominates the system. As will be shown

in Sec. IlIC, this may not be the case. If this assumption

where&> 0. If surfactants are not present, E8.7) gives the does not hold, the growth of the domain size will be more
usual R(t) ~tY3 law [5,20], when hydrodynamics is domi- Complicated than Eq4¢3.9) and(3.8).

nant. On the other hand, if there are surfactants, the solution Finally, note that the characteristic length scales in ordi-
of Eq. (3.7) gives nary cells at the end of our simulations are consistent with

the expectation that the more surfactants there are, the

t~{linear combination of p)®~2™"2R™\/£R—(p) smaller the equilibrium domain sizes will be. This expecta-
tion, however, is not observed in HS cells without thermal
and(p) In[ VER+ VER—(p)1}, (3.9  fluctuations (Fig. 8. Neither was it observed in ordinary

_ . cells with thermal fluctuationgl0]. Whether this expectation
where 2n=1, 3, and 5 when hydrodynamics dominates, antholds when both hydrodynamics and thermal fluctuations are

included in model2.1) needs further investigation.
t~{linear combination oRY2\¢R—(p) (2.9 g

C. Time evolution of structure factor and Porod’s plot
and(p)In[ VER+ VER—(p)1}, (3.9 . .
The circularly averaged structure factor for the binary

when the hydrodynamics is ineffective. fluid is defined as
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T ’ ’ T T that the formation of smooth and thin interfacegdidimen-
sions leads to Porod’s law, lim., k*1S(k)= B4A, where
Byg=29"174=221(d/2) (B,=2 andB;=2), andAis the
interface area density. Both plots begin to exhibit this
asymptotic behavior at~10"°, indicating the formation of
sharp interfacesct. the right column in Figs. 194 The Po-
rod tail in Figs. 14 and 15 also exhibit a second peak, which
was attributed by Shinozaki and Oono to the local curvature
fluctuations[33].

D. Joint effect of hydrodynamics and thermal fluctuations

Finally, we present a preliminary investigation of the ef-
fect of thermal fluctuations. The CDS scheme used for this
investigation is the same as in Eq2.9), except that Egs.
(2.90 and(2.9d are replaced by

log,, <kw(t)>

P* (1) = ¢(n,t) + M ,AZ(n,t) + C, 7 (n,t)

and

p* (n,t)=p(n,t)+ M, AJ(N,1)+C,7,(n,t),

oot where the thermal fluctuationg,(n,t) and 7,(n,t) are
%o implemented in the same way as in RdfH,43. Since the
FIG. 17. Time evolution ofk,) for a Hele-Shaw cell with C, andC, values used in Ref10] lead to numerical over-

. 2_ . .
thermal fluctuations, a Hele-Shaw cell without thermal fluctua-  flow when the maximum ¢®=10) hydrodynamic effect is

tions, an ordinary cell with thermal fluctuations, and an ordinary ~ included, in our simulation we use,=C,=0.01. Figure 16
cell without thermal fluctuations. shows the time evolution of a Hele-Shaw cell with thermal

fluctuations for{p)=0.4, starting from the same initial dis-
1 tributions of ¢ and p as in Figs. 3 and 4. As previously
Sy(k)= o E Sy(k), (3.10 observed in Ref.16], although the domain structure does not
kkealk show much difference at late times when only hydrodynam-
ics is included, there appears a significant difference when
. both hydrodynamics and thermal fluctuations are included
={klk—3A<|k|<k+3A} (A=width of the shell, andN (cf. Figs. 3, 4, and 16 It can be seen from Fig. 16 that from

is the number of points in the shell. The dynamical scaling _ 515 10 t=5x 16 the temporarily trapped surfactants
hypothesis proposed for phase separation in a binary systleia

where A(k) is the circular shell in reciprocal spacg(k)

. ; . e able to migrate to the interfaces, while at deep quench
[2,5] asserts that there is a single dominant length scale a —0) the surfactants are already stuck in domains. Unfor-

that the scaled structure factét(Q)=(k)?S,(k), where  tunately, our simulation time is not long enough to see
S,(k) is the normalizedS,(k) and Q=k/(k) is the scaled whether all the temporarily trapped surfactants eventually
wave vector, should be invariant at different times. Figuresmigrate to interfaces at the chosen fluctuation strer@gjh
12 and 13 plot=(Q) versusQ in the HS cell for(p)=0.1  andC,.
and 0.4[41]. It can be seen clearly that the hypothesis does The evolution of the inverse characteristic lengkt)) is
not hold. There may be more than one dominant length scalglotted in Fig. 17. It is evident that the thermal fluctuations
in the system. When the average surfactant concentration &e irrelevant until a very late stage, as mentioned in Sec.
lower than the percolation thresholB(Q) settles down to |l B. Into this very late stage the thermal fluctuations become
its asymptotic frozen form in the latter part of the “algebraic relevant because, as discussed in Sec. Il A, they become the
growth regime” defined by the fits in Fig. 10. If the average only force that drives the system away from being frozen. It
surfactant concentration is higher than the threshbldQ) can be seen that there exists a crossover in the very late stage
does not settle down to an asymptotic frozen form until theat which the phase separation shifts from a hydrodynami-
growth is frozen, that is, untii=10°3 A qualitatively simi-  cally driven mechanism to a thermally driven mechanism.
lar behavior is also observed in ordinary cells. This is con-Since domains cannot grow infinitely in the presence of sur-
trary to what Kawakatset al. [24] observed in their model, factants, thermal fluctuations will eventually become inca-
where dynamical scaling behavior was found at all concenpable of further decreasin(g,,). By then, what thermal fluc-
trations. tuations can do is simply to reshuffle surfactants and to
Figures 14 and 15 show the so-called Porod’s plots foundulate interfaceq.The time covered in the simulation is
(p)=0.1 and 0.4[41]. Tomita showed clearly in Ref42]  too short to see the final stop of domain growth.
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IV. CONCLUSION thermal fluctuations. Fluid systems with an upper consolute
I;?oint, when being quenched to low temperature, may be used

Incorporating hydrodynamics into the phase separatio . . . .
P g hy y b b Jo examine experimentally the possible existence of trapped

dynamics of the model proposed by Komura and Kodam
[10] leads to some unexpected results, as presented in Sedrfactant clusters. _ _ _ _

lll. The trapping of surfactants in domains of binary fluid at ~ The unusual growth behavior observed in our simulations
deep quench is an interesting feature that deserves furth& e€xplained using an estimation of interface tension that is
investigation. For weak thermal fluctuations this feature mayifferent from the estimation made by Kawakatsal. [24].

be able to survive. For strong thermal fluctuations, although his explanation implies that the algebraic or logarithmic
trapping becomes less likely to occur, it will be interesting tobehavior proposed in previous investigations is possibly
study dynamics under the competition of hydrodynamics aneversimplified.
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